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Abstract. It is well known that material scientists consider evolution equations associated to
energy functionals that are not convex. The problem with this approach is that the associated
evolution equation becomes forward-backward parabolic. A higher order term is usually added
in order to be able to deal with the inherent instability.

Here we consider a problem within this framework, namely we investigate the gradient flow
for an anisotropic area functional characterized by a non-convex weighting function, and regu-
larize it via a Willmore term.

We study the case of one-dimensional graphs. The evolution problem is tackled numerically
by considering a suitable finite element scheme and by performing several simulations. The lat-
ter allow us to get a feeling about the behavior of the evolution equation when the regularization
parameter is sent to zero.

Presenting new simulations and revisiting some experiments from a previous investigation of
the authors, we shift our focus on the longtime behavior of the flow.
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1 INTRODUCTION

The investigation of planar sharp phase-interface models arising in several applications fo-
cuses on the study of evolution equations of type

b(θ)V = (f(θ) + f ′′(θ))κ− F, (1)

where V is the normal velocity, κ the curvature, θ stands for the angle of the interface normal
to some fixed axis, b is a positive map that characterizes the kinetics and measures the drag
opposing interfacial motion, f is the interfacial energy, and F is the difference in bulk energy
between phases (see [1] and Gurtin’s monograph [6]). It is well known that material scientists
use energies for which (f + f ′′) is negative on some intervals (see for instance references given
in [7]). The difficulty with this approach is that the associated evolution equation becomes
forward-backward parabolic. This problem can be overcome by adding a higher order term, for
instance by considering

b(θ)V = (f(θ) + f ′′(θ))κ− F − ε2(κss + 1
2
κ3) (2)

with ε > 0 small (s is here the arc-length), and by studying the associated fourth order evolution
equation (see [1] and [4]).

Here we consider motion of one-dimensional graphs under anisotropic non-convex mean
curvature flow regularized via a Willmore term: more precisely we consider the L2-gradient
flow of the energy

Eε : u 7→
∫

graphu

γ(ν)dA+ ε2

∫
graphu

κ2dA, ε > 0, (3)

where κ denotes the curvature of the graph of u, the vector ν its unit normal, and γ is a non-
convex anisotropy map. Note that with ν = (cos θ, sin θ) and γ(ν) = f(θ) one easily recovers
the evolution equation (2) (with F ≡ 0 and b ≡ 1) and that the non-convexity of γ is related to
the negative sign of (f + f ′′).

The fourth order evolution equation associated with the flow of the above energy functional
(3) takes the form
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4
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)
(4)

plus boundary conditions; here g denotes the map g(y) := γ(y,−1).
Our ambitious long term plan is to understand this evolution equation in the limit ε → 0.

This is far from being a trivial task (cf. for instance [3], [2] and references therein).
As a first step in this direction we investigated the stationary case [8]. By using simple but

beautiful geometric arguments we proved that under suitable assumptions on the non-convex
anisotropy map γ there exist minimizers of Eε in the class Cα,β ∩H2,2(0, 1) where

Cα,β := {u ∈ H1,1(0, 1) : u(0) = α, u(1) = β}, α, β ∈ R. (5)

Moreover we were able to state that, for sufficiently small ε, minimizers are either concave or
convex and that a sequence of convex minimizers uε for Eε converges (for ε → 0) in H1,p

(1 ≤ p < ∞) to a piecewise linear map u, which we can describe accurately (we refer to [8]
for more details).
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Next we looked at the evolution equation: here we tackled the problem from a numerical
point of view, in order to get an idea for what phenomena should be expected in the limit,
when the regularization parameter is sent to zero. By means of a finite element discretization
we provided a suitable semi-implicit scheme for a mixed formulation (this allows us to use
piecewise linear finite elements) and considered several numerical experiments.

In [8] we focussed on the phenomena that appear in the first part of the evolution, where one
observes a fast formation of ε-dependent microstructures (“wrinkles”).

Here we present first experiments that deal with the evolution after the first big energy drop.
To this end we perform an appropriate time rescaling of the flow. We present new simulations
and revisit some of our previous tests shown in [8, § 9.3].

Acknowledgements. We would like to thank G. Bellettini, G. Dziuk, and C. M. Elliott for
many helpful conversations. This work was partially supported by DFG Transregional Collab-
orative Research Centre SFB TR 71.

2 PRELIMINARIES AND NOTATION

In the following we consider non-convex anisotropy functions γ : R2 → [0,∞), γ ∈ C2(R2\
{0}), that are positive (γ(p) > 0 for p 6= 0) and positively homogeneous of degree one, that is
γ(λp) = |λ|γ(p) for λ ∈ R, p ∈ R2. The associated Frank diagram is given by

Fγ := {p ∈ R2 : γ(p) ≤ 1}. (6)

As mentioned in the Introduction we study the evolution of one dimensional graphs of

u : Ī → R, I = (0, 1),

for the L2-gradient flow related to the energy given in (3). Therefore it is natural to define

g : y 7→ γ(y,−1) (∈ C2(R, (0,∞)), (7)

and to express the energy functional as

Eε : u 7→
∫ 1

0

g(ux(x)) + ε2 uxx(x)2

(1 + ux(x)2)5/2
dx. (8)

For the derivation of a mixed formulation of the flow it is useful to introduce a new map

w := κ
√

1 + u2
x =

uxx
1 + u2

x

(9)

where κ = uxx(1 + u2
x)
−3/2 is the curvature of the graph.

Our discretization scheme is based on following mixed formulation of the flow: look for
u(·, t) ∈ H1,2(I) and w(·, t) ∈ H1,2

0 (I) such that ut(·, t) ∈ H1,2(I), u(0, t) = α, u(1, t) = β,
u(·, 0) = u0, and∫
I

ut√
1 + u2

x

ϕdx = −
∫
I

g′(ux)ϕx dx− ε2

∫
I

w2 uxϕx
(1 + u2

x)
3/2
− 2

wxϕx
(1 + u2

x)
3/2

dx ∀ϕ ∈ H1,2
0 (I),

(10)∫
I

w√
1 + u2

x

ψ dx = −
∫
I

ux√
1 + u2

x

ψx dx ∀ψ ∈ H1,2
0 (I) (11)
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for almost every time t ∈ [0, Tε].
Note that the classical version of the flow is the one given by (4) subject to the boundary

conditions u(0, t) = α, u(1, t) = β, uxx(0, t) = uxx(1, t) = 0 (natural boundary conditions)
and to the initial data u(·, 0) = u0.

The above mixed formulation is derived by computing the first variation of the energy func-
tional in such a way that no integration by parts is needed. As a consequence it is easy to show
that in the semi-discrete setting the energy decreases along the flow (see [8] and references
given in there for more details).

The non-convexity of the anisotropy function leads to very interesting phenomena. Indeed,
for small ε, it is natural to expect a ”heat-equation-like” evolution in those part of the domain
where the map g is convex. In those regions where this is not the case one has to be more
watchful. Thus we define (cf. also [5]) the globally and locally unstable set

GUS := {y ∈ R : g(y) > g∗∗(y)} ⊃ LUS := {y ∈ R : g′′(y) < 0}.

The (closed) set where g and its convex envelope g∗∗ coincide is the globally stable set

GS := R \GUS = {y ∈ R : g∗∗(y) = g(y)}.

3 LONGTIME EVOLUTION AND TIME RESCALING

In [3], where a related problem is thoroughly discussed, the authors suggested that one can
divide the evolution into three phases: a first (very) short period of time characterized by wrin-
kles formation and a drastic drop in the energy, a second one in which the non wrinkled regions
evolve in a ”heat-equation” manner (at this stage the wrinkled region contributes to so little
energy that motion herein is extremely slow), and a third one which is characterized by the mo-
tion of the free boundary separating the wrinkled from the unwrinkled region. The experiments
done for our model indicate that we can adopt a similar point of view.

As mentioned in the Introduction we intend to focus here on the evolution after the formation
of wrinkles (experimentally analyzed in [8]). One way to “quickly go past” the first phase
is obtained by performing a time rescaling. The rescaling τ = t

ε
(with small ε) obviously

transforms (4) into
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whereas the rescaling τ = t
ε2

gives
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Thus for simplicity we will describe the flow as

ut√
1 + u2

x

= Ψ( weighted length term )−Υ( Willmore term ) (12)

= Ψg′′(ux)uxx −
Υ

(1 + u2
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)
where Ψ and Υ correspond to a chosen ε-rescaling and will be specified for each numerical
experiment.
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4 WRINKLES PHENOMENA

Similarly to [3] (cf. also [5]) we have observed that the flow develops wrinkles very early in
the stage of the evolution and that these wrinkles do not leave the region

ΣL(u0) := {x ∈ [0, 1] : u0x(x) ∈ LUS},

where u0 is the given initial curve. A plausible explanation for the wrinkles phenomena is given
in [3] (see also [8, § 7]). In the following we briefly sketch the main arguments for the sake of
the reader.

We know that lines ū(x) = px + q, x ∈ [0, 1], p, q ∈ R, are stationary solutions for the
flow for any choice of ε (their stability or instability depending on the value p and the choice
of anisotropy). We might therefore assume that, for perturbed initial data, say ū + δv̄(·, ε), a
solution to the flow is of type

u(x, t, ε; δ) = ū(x) + δv(x, t, ε) +O(δ2)

for small δ. Plugging the above expression into (12), dividing by δ, and choosing δ = 0, we
observe that v has to satisfy the linear PDE

vt = Ψg′′(p)vxx
√

1 + p2 − 2Υ
vxxxx

(1 + p2)2
.

Looking for solutions of type v(x, t, ε) = exp(λt) sin(mx), we see that λ = λ(ε) and m =
m(ε) must satisfy the relation

λ = −m2

(
2Υ

(1 + p2)2
m2 + Ψg′′(p)

√
1 + p2

)
.

Thus we notice that if g is convex then λ is negative and oscillations can be basically neglected.
On the contrary, if g′′(p) < 0 then we see that λ is positive provided that m2 < −Ψ

Υ
g′′(p)

2
(1 +

p2)5/2. More precisely λ assumes it maximum value

λmax = Ψ
Ψ

Υ

(g′′(p))2

8
(1 + p2)3 (13)

at

m2
max = −Ψ

Υ

g′′(p)

4
(1 + p2)5/2. (14)

Note that for the considered flows the ratio

Ψ

Υ
=

1

ε2
(15)

is independent of the chosen time rescaling (and therefore this is true also for the wavelength
of v). On the other hand λmax is of order 1

ε2
, 1
ε3

, 1
ε4

depending whether we are considering the
original problem or the rescaled one with τ = t

ε
and τ = t

ε2
respectively. In any case we can

expect to observe the oscillatory term v very rapidly, and even more so by every time rescaling.
Next, thinking of a flow with initial curve u0, we can assume that locally around x0 ∈ [0, 1]

the initial map can be approximated by its linear part u0x(x0)(x− x0) + u0(x0). Assuming that
the above analysis applies, we expect the wrinkles phenomenon to appear only in the region
ΣL(u0) = {x ∈ [0, 1] : u0x(x) ∈ LUS} as stated above. Furthermore the expression for mmax

suggests that the wave length of the appearing wrinkles should be O(ε).
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5 THE DISCRETE SCHEME

Based on (10) – (11), we proposed in [8] the following semi-implicit scheme, which we use
also for the experiments shown in this paper.

Let Ī =
⋃N+1
j=1 Ij be a decomposition of the interval Ī = [0, 1] into intervals Ij = [xj−1, xj]

for j = 1, . . . , N + 1. We set x0 = 0 and xN+1 = 1. Let hj = |Ij| and h = maxj=1,...,N+1 hj be
the maximal diameter of a grid element. We assume that for some constant c̃ > 0 we have that
hj ≥ c̃h. In practice we will use equidistant grid points so that h = hj for all j = 1, . . . , N + 1.
We introduce the finite dimensional space

Xh := {v ∈ C0(Ī ,R) : v|Ij ∈ P1(Īj), j = 1, · · · , N + 1}

of continuous piecewise affine functions on the grid. The N + 2 scalar nodal basis functions
ϕj ∈ Xh are defined by ϕj(xi) = δij . Let X0

h := span{ϕ1, . . . , ϕN} and Ih be the usual linear
interpolation operator. Let τ be the time step. For a generic function f we denote its evaluation
at the m-th time level tm = mτ by fm = f(·, tm).

The discrete problem can be formulated as follows: compute um+1
h ∈ Xh and wm+1

h ∈ X0
h

so that um+1
h (0) = α, um+1

h (1) = β and∫
I

um+1
h − umh

τ

ϕh
Qm
h

+ Ψ

∫
I

g′(umhx)ϕhx + Υ

(∫
I

(wmh )2

(Qm
h )3

um+1
hx ϕhx − 2

∫
I

wm+1
hx

(Qm
h )3

ϕhx

)
= 0

(16)

for all ϕh ∈ X0
h, and ∫

I

wm+1
h

Qm
h

ψh +

∫
I

um+1
hx

Qm
h

ψhx = 0 ∀ψh ∈ X0
h , (17)

where Qm
h =

√
1 + (umhx)

2. As initial data we use u0
h = Ihu0 and w0

h, which is computed from∫
I

w0
h

Q0
h

ψh +

∫
I

u0
hx

Q0
h

ψhx = 0 ∀ψh ∈ X0
h .

Thus we have to solve a linear system in each time iteration (more details in [8]).

6 NUMERICAL EXPERIMENTS

For all experiments shown here we choose

h = 10−3 and τ = 100h4 = 10−10.

We consider the anisotropy function from [8, § 9.2]

g(y) =

{
1
8
(y − 1)2(y + 1)2 + 1, |y| ≤ 1,√

1 + (|y| − 1)2, |y| > 1,

taking its minima at ±1, see Figure 1.
A straightforward computation gives

g′(y) =

{
1
2
y(y2 − 1), |y| < 1,

(|y|−1)√
1+(|y|−1)2

sign(y), |y| > 1, g′′(y) =

{ 1
2
(3y2 − 1), |y| < 1,

1
(1+(|y|−1)2)3/2

, |y| > 1.
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Fγ
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Figure 1: The anisotropy function used for the experiments.

Note that g ∈ C2(R), and g′′(y) = 0 if and only if y = ± 1√
3
. Thus we have that

LUS =

(
− 1√

3
,

1√
3

)
, GUS = (−1, 1). (18)

We stop our computations whenever the energy starts to oscillate, even so slightly (when this
happens, it is usually after some coarsening of the microstructures and in the proximity of a
wrinkled curve with a shape similar to that of a possible equilibrium). We conjecture such
behavior to be a consequence of stability issues and round-off errors. A smaller time step is
theoretically more appropriate but it would be at expenses of the computational time.

6.1 Wavelength

As initial data for the tests discussed in Sections 6.1.1, 6.1.2, and 6.1.4 we choose

u0(x) =
sin(2πx)

20π
(19)

which has also been considered in [8, Test 3]. Its slope amounts to u′0(x) = 1
10

cos(2πx) which
gives ΣL(u0) = [0, 1]. Thus we expect microstructures to appear in the whole interval.

To give an estimate for the number of wrinkles nw, we proceed as in [3] (see also [8]): since
|u′0| ≤ 1

10
� 1 for all x ∈ [0, 1], we may take p = 0 into (14) and using the fact that g′′(0) = −1

2

we obtain the approximation

nw ≈ mmax

2π
=

1

4
√

2π

√
Ψ

Υ
. (20)

In view of (15) this quantity does not depend on time rescaling as remarked in Section 4.

6.1.1 Merging of wrinkles

In our previous paper [8, Test 3] we investigated for the initial data (19) evolution of type
(Ψ,Υ) = (1, ε2). Here we consider the time rescaled version (Ψ,Υ) = (1

ε
, ε) with ε = 1

500
,

thus (Ψ,Υ) = (500, 1
500

). We obtain nw ≈ 28.1.
Time shots of the evolution and the energy plot are shown in Figure 2. The first five shots

qualitatively correspond to the plots in [8, Figure 10]. The wrinkles invade the interval from the
boundary points. At time t = 5 · 10−5 the formation of wrinkles appears to be completed and
one can observe how accurate is the prediction nw ≈ 28.1.

The time rescaling allows us to compute (a good part of) the evolution after the formation
of wrinkles in a reasonable time. Here we face a merging phenomenon which occurs in several
discrete steps and leads to a doubling of wavelength.
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Figure 2: Merging of wrinkles. The red curve in the time step portraits above refers to the plot immediately above.
The plots are true to scale. The vertical blue lines in the energy plot below correspond to the time step portraits.
Be aware of the log-scale for the time coordinate. 8
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6.1.2 Superimposition of waves

We perform two tests, namely (Ψ,Υ) = (2500, 1) and (Ψ,Υ) = (4000, 1) which leads to
nw ≈ 2.8 and nw ≈ 3.6 respectively. Plots are shown in Figures 3 and 4.

We mainly observe the following two facts.
a) When nw is small and the initial curve is a “wave” itself, it might be harder to confirm the

predicted number of wrinkles. However, at a certain stage of the evolution, the curve is in fact
a superimposition of sines, one having the same wavelength as the original curve and another
with wavelength according to mmax, see Section 4.

b) A relatively small change in the predicted number of wrinkles (2.8 vs. 3.6) may lead to
big differences in the evolution. Compare Figure 3 vs. 4.

6.1.3 Perturbed initial data

In order to break symmetry we add a small “bump” to (19), so we consider the perturbed
initial data

ũ0(x) = u0(x) + b(x)

drawn in Figure 5 (top), where

b(x) = 40 exp

(
− 1

x2

)
exp

(
− 1

(1− x)2

)
.

In order to show ΣL(ũ0) = [0, 1] we first compute the derivatives

b′(x) = 80 exp

(
− 1

x2

)
exp

(
− 1

(1− x)2

)
·
(

1

x3
− 1

(1− x)3

)
,

b′′(x) = 80 exp

(
− 1

x2

)
exp

(
− 1

(1− x)2

)
·

[
2

(
1

x3
− 1

(1− x)3

)2

− 3

x4
− 3

(1− x)4

]
.

The second derivative vanishes if and only if the bracket [· · · ] is zero which is equivalent to

6x8 − 24x7 + 40x6 − 36x5 + 3x4 + 26x3 − 27x2 + 12x− 2 = 0.

This equation possesses in [0, 1] precisely the two roots x0 ≈ 0.42541 and 1 − x0 ≈ 0.57459.
From b′(0) = b′(1) = 0 and b′(1 − x0) = −b′(x0) we deduce |u′0| ≤ 1

10
+ b′(x0) ≈ 0.21895

which clearly is smaller than 1√
3
≈ 0.57735.

Letting (Ψ,Υ) = (2500, 1), the situation is similar to the first case from Section 6.1.2.
Interestingly, the time shots of the flow for t > 0 look quite symmetric, so the non-symmetry

of the initial curve is not reflected by the evolution.

6.1.4 The length of the first time scale

Let T = T (ε) denote the time where wrinkles have emerged but not yet merged, e. g.
t = 10−5 in Figure 2. (In previous experiments [8, Test 3] we considered the time at which
the energy starts to drop.)

As already observed [3, § 6.4] (see also (13)) we expect T (ε) = O(ε2) for (Ψ,Υ) = (1, ε2).
Rescaling the time leads to T (ε) = O(ε3) for (Ψ,Υ) = (1

ε
, ε) and T (ε) = O(ε4) for (Ψ,Υ) =

( 1
ε2
, 1).
In Table 1 we compare the respective values for T (ε) from our previous simulations [8] with

the corresponding tests in the (1
ε
, ε) setting. For the ( 1

ε2
, 1) rescaling this is not possible as the

expected values are too close to the time step size to read off sufficiently exact data.
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Figure 3: Superimposition of a wave by ≈ 2.8 wrinkles (first case Ψ = 2500). The first two diagrams show
the evolution of the curve before and after t0 = 4 · 10−5. The third diagram compares the curve at time t0 with
s(x) = 1

11 sin 2πx− 1
11π sin 6πx. The vertical lines in the energy plot below correspond to the time step portraits

drawn in the diagrams above.
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Figure 4: Superimposition of a wave by ≈ 3.6 wrinkles (second case Ψ = 4000). The first two diagrams show
the evolution of the curve before and after t0 = 2 · 10−5. The third diagram compares the curve at time t0 with
s(x) = 1

20 sin 2πx − 1
20 sin 6πx. The vertical lines in the energy plot below correspond to the time step portraits

drawn in the diagrams above.
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Figure 5: Perturbed initial data. The first diagram shows the initial curve. Note the different scaling of x- and
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(Ψ,Υ) (1, ε2) (ε−1, ε) (ε−2, 1)
ε = 5 · 10−4 2.8 · 10−4 1.4 · 10−7 —
ε = 1 · 10−3 1.1 · 10−3 1.2 · 10−6 —
ε = 2 · 10−3 4.2 · 10−3 8.7 · 10−6 2.2 · 10−8

experimental power 1.95 2.98 —

Table 1: Time values T (ε) at which wrinkles have emerged but not yet merged and thus the first time scale has
ended. The experimental power is computed by linear interpolation in a log-log scale, see Figure 6.

Figure 6: Visualization of the values in Table 1.

6.2 WV-curves

Here we choose the initial curve to be a perturbation of a stationary solution. Precisely we
take

u0(x) =


−x, x ∈ [0, 1

4
− r√

2
],

−1
4

+
√

2r −
√
r2 − (x− 1

4
)2, x ∈ (1

4
− r√

2
, 1

4
+ r√

2
),

x− 1
2
, x ∈ [1

4
+ r√

2
, 1],

where r = 3
8(
√

2+
√

5/2)
. The initial curve is depicted in Figure 7 (top).

In this case ΣL(u0) = (−1
2
r + 1

4
, 1

2
r + 1

4
) ≈ (0.176, 0.324).

The evolutions for (Ψ,Υ) = (500, 1
500

) and (Ψ,Υ) = (200, 1
200

) are depicted in Figures 7
and 8.

In the first case we observe a merging process similar to Section 6.1.1. The relatively large
value ε = 1

200
does not permit the evolution of clearly visible wrinkles in the second case, how-

ever the curve at t = 10−5 is almost concave about x = 1
4

which could reflect a superimposition
by two wrinkles.
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Figure 7: The W-curve (first case Ψ = 500). The first diagram shows the initial curve versus the state after
evolution of wrinkles. Time shots of the evolution in the interval [0.15, 0.35] before and after t0 = 3.7 · 10−6 are
followed by the energy plot (log-scale for the time coordinate).
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Figure 8: The V-curve (second case Ψ = 200). The first diagram shows the initial curve versus the state after
evolution of wrinkles. Time shots of the evolution in the interval [0.15, 0.35] before and after t0 = 2.5 · 10−5 are
followed by the energy plot (log-scale for the time coordinate).
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Figure 9: Long-time evolution. Be aware of the log-scale for the time coordinate in the energy plot.

16



Paola Pozzi & Philipp Reiter

6.3 Long-time evolution

As initial data we choose
u0(x) = 1

4
sin 2πx+ 1

2
πx

which has also been considered in [3, § 6.2] and [8, Test 6]. A straightforward calculation gives
ΣL(u0) = (xL, 1−xL), where xL = 1

2π
arccos( 2

π
√

3
−1) ≈ 0.359. We consider the evolution for

(Ψ,Υ) = (1000, 1
1000

), obtaining better resolved wrinkles than in our previous experiment [8,
Test 6] where (Ψ,Υ) = (1, 10−8) and τ = 10−8. The initial curve evolves to an equilibrium.
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